Imprimitive Q-polynomial Association Schemes
نویسنده
چکیده
It is well known that imprimitive P -polynomial association schemes X = (X, {Ri}0≤i≤d) with k1 > 2 are either bipartite or antipodal, i.e., intersection numbers satisfy either ai = 0 for all i, or bi = cd−i for all i 6= [d/2]. In this paper, we show that imprimitiveQ-polynomial association schemesX = (X, {Ri}0≤i≤d) with d > 6 and k∗ 1 > 2 are either dual bipartite or dual antipodal, i.e., dual intersection numbers satisfy either ai = 0 for all i, or b ∗ i = c ∗ d−i for all i 6= [d/2].
منابع مشابه
Imprimitive cometric association schemes: Constructions and analysis
Dualizing the “extended bipartite double” construction for distance-regular graphs, we construct a new family of cometric (or Q-polynomial) association schemes with four associate classes based on linked systems of symmetric designs. The analysis of these new schemes naturally leads to structural questions concerning imprimitive cometric association schemes, some of which we answer with others ...
متن کاملSome new constructions of imprimitive cometric association schemes
In a recent paper [9], the authors introduced the extended Q-bipartite double of an almost dual bipartite cometric association scheme. Since the association schemes arising from linked systems of symmetric designs are almost dual bipartite, this gives rise to a new infinite family of 4-class cometric schemes which are both Q-bipartite and Q-antipodal. These schemes, the schemes arising from lin...
متن کاملOn Q-Polynomial Association Schemes of Small Class
We show an inequality involving the third largest or second smallest dual eigenvalues of Q-polynomial association schemes of class at least three. Also we characterize dual-tight Q-polynomial association schemes of class three. Our method is based on tridiagonal matrices and can be applied to distance-regular graphs as well.
متن کاملSchur rings and non-symmetric association schemes on 64 vertices
In this paper we enumerate essentially all non-symmetric association schemes with three classes, less than 96 vertices and with a regular group of automorphisms. The enumeration is based on computer search in Schur rings. The most interesting cases have 64 vertices. In one primitive case and in one imprimitive case where no association scheme was previous known we find several new association s...
متن کاملOn Polynomial Decompositions
The purpose of this paper is to introduce the norm decomposition which enables us to compute the roots of a monic irreducible imprimitive polynomial f ∈ Q[t] by solving polynomial equations of lower degree. We call an irreducible polynomial f imprimitive if the number field generated by a root of f contains non-trivial subfields. We will see that for each subfield there exists a norm decomposit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998